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The path integral formulation of statistical dynamics involves a functional 
determinant whose role within the theory has remained somewhat unclear. This 
has occasionally led to incorrect generalizations of the formalism to the case of 
multipticative random forces. We present a hidden symmetry of the theory and 
show how it can be used to clarify these issues. Important further applications 
are also pointed out. 
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1. I N T R O D U C T I O N  

Classical statistical dynamics is, roughly speaking, a theory of classical 
(usually nonlinear) systems, in which randomness is introduced by means 
of stochastic external driving terms and/or random initial conditions. A 
satisfactory formulation was lacking until M a r t i n  e ta l .  (') proposed an 
operator  formalism, patterned after the Schwinger algorithm in quantum 
field theory (QFT),  that allowed the implementation of a systematic 
approximation procedure. Several authors quickly realized that the theory 
admitted a functional integral formulation (2) which closely parallels the 
modern version of Q F T  (for an excellent review of both the operator  and 
functional versions of the theory, see Jensen~3)). Although it is undeniable 
that crucial differences between these two approaches exist, in this paper 
we wish to pursue a further analogy that will permit the application of a 
powerful tool widely used in gauge theories, namely BRS invariances. (4/ 
The emergence of such a symmetry is not difficult to understand. When the 
path integral formula for the generating functional is written down, a deter- 
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minant appears as a (partial) reflection of the fact that we are dealing with 
a constrained theory, i.e., the fields must satisfy the stochastic differential 
equation that provided the basic starting point. This determinant can then 
be turned into an integral over anticommuting fields (ghosts) in a standard 
fashion, and one is ready to start searching for transformations connecting 
commuting and anticommuting fields which leave the "action" invariant. 
The ultimate reason for the existence of this (BRS) symmetry has been 
clearly pointed out by Zinn-Justin(5~: it is nothing more than the expres- 
sion, within the ghost formalism, of the constraint mentioned above. Since 
this is an invariance of the full generating functional, it implies relationships 
between the exact Green's (or correlation) functions without having to 
resort to perturbation theory. This observation forms the backbone of the 
present paper, and we will use it to show, in a nonperturbative setting, how 
it effectively reduces the number of Green's functions to be computed as 
well as the crucial role played by the determinant. 

The organization of the paper is as follows. In Section 2 we give a brief 
account of the usual treatment of the determinant, and explain why we 
regard it as unsatisfactory. The theory is shown to be BRS invariant in 
Section 3, and in Section 4 we proceed to practical applications of this 
result. In Section 5 we discuss the elimination of the conjugate field in the 
specific case of a white noise force. Finally, Section 6 is devoted to a 
remark concerning the problem of renormalizability and conclusions. 

2. REVIEW OF THE STANDARD APPROACH 

We consider a field ~b that satisfies the equation 

a,~b + F[q~] = f  (1) 

where F[~b] contains no time derivatives, and the random force f has a 
Gaussian distribution 

{f(x)f(y)) = K(x, y) (2) 

K is a given function, and x stands for (x, t). 
To compute correlations one would have to solve Eq. (1) for ~b as a 

functional of f and then average over f.  Alternatively, one can proceed via 
the generating functional ~2) 

2ff ~(x) K(x,y)~(y)d4xd4y+f J~d4x+f L~d4x (3) 

and use functional derivatives with respect to J and/or L. 
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A slightly modified version of the usual argument would then run as 
follows. Assume that F has a term linear in ~b and set 

F = I2t q$ + F 2 (4) 

where F z contains the nonlinear pieces. For example, H =  -vV 2 for the 
Navier Stokes equation. If G denotes the retarded Green's function for 
•, + H, then, in matrix notation, 

( t5t = d e t ( 0 , + / ) ) e x p T r l n  I + G  &bJ 

Due to the retarded nature of G, only the first term survives in the expan- 
sion of the logarithm. Taking the trace then yields 

($F2 d4x} d e t ( c ~ t + ~ = d e t ( O ~ + I 2 I ) e x p { O ( O ) f - ~ ( x )  (6) 

The symbol 6F2/6~(x) stands for the result of computing 6F2(x)/6(J(y ), 
dropping the 6(tx- ty) ,  and finally setting x = y. It is here that the purely 
formal nature of this method becomes apparent. The last step generates a 
63(0), which should be properly regularized in order for the expression to 
make sense. This difficulty, which is a direct consequence of the fact that 
we are dealing with functional determinants instead of finite-dimensional 
ones, does not arise in the ghost formulation. 

Even if one ignores this problem, as is usually done, one has to 
provide a definition of the quantity 0(0). The customary choices, 0(0)= 0 
and 0(0)= 1/2, are directly related to the It6 and Stratonovich interpreta- 
tions ~6) of Eq. (1). The first option completely eliminates the determinant 
from the theory, a fact that immediately raises the question of the 
relationship between the resulting formulations. Fortunately, for non- 
multiplicative random forces, the answer turns out to be that they are 
equivalent, regardless of the value assigned to 0(0). To prove this, intro- 
duce a loop counting parameter a into the generating functional (see, e.g., 
ref. 7), and do a perturbation expansion in a. One finds that the term 
O(O)gF2/6~ appearing in (6) gets multiplied by ( I - a ) ,  where the first 
factor comes from the original determinant, and the second from the inter- 
action t e r m  idF 2 in Eq. (3), a d~b leg in the graph closing onto a loop 
(hence the factora). Since a must be set equal to one in the end, we 
conclude that the determinant drops out irrespective of the value of 0(0). 
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Again, the need to assign a value to an otherwise undetermined quantity 
never arises when ghosts are used. 

The above analysis is in agreement with known facts in the theory of 
stochastic differential equations. (6) There it is also well known, however, 
that the It6 and Stratonovich prescriptions are not equivalent in the case 
of multiplicative random forces, and therefore consistency demands that 
the corresponding path integral formulas, too, should predict physically 
inequivalent results. Recent experiments seem to favor the Stratonovich 
interpretation, at least in the few cases studied. (8) Whether this is true in 
general is unknown and reflects the lack of a theoretical basis to make a 
choice for systems involving strictly white noise. For a real noise with finite 
correlation time, the natural interpretation is that of Stratonovich, and one 
could then argue that the results reported in ref. 8 are to be expected if one 
regards white noise as a limiting case. In the following we restrict ourselves 
to nonmultiplicative forces. 

To summarize, the usual treatment involves dealing with a divergent 
[83(0)] and an undefined [0(0)] expression. Moreover, the proof that this 
undefined expression is of no consequence to the physical observables can 
only be carried out in perturbation theory. The strong appeal of the ghost 
formulation lies in the fact that such ambiguous quantities never enter the 
theory. In addition, the presence of the ghosts reveals a symmetry which 
can be used, among other things, to show at the nonperturbative level the 
cancellation of the contribution coming from the determinant with that 
coming from a q~b interaction term. Since this symmetry also has a bearing 
on the problem of renormalizability, we feel that ghosts are a powerful 
alternative to the conventional methods. 

3. GHOSTS A N D  BRS I N V A R I A N C E  

In general, a BRS invariance is a reflection of a symmetry of the action 
with ghosts included. As such, it manifests itself as an identity satisfied by 
the generating functional, and therefore also as a tower of identities 
between Green's functions. 

Ghosts were first introduced into statistical dynamics in ref. 9 (for the 
specific case of turbulence, see ref. 10) using a standard prescription from 
Q F T that allows one to rewrite the determinant in Eq. (3) as a functional 
integral over anticommuting Grassmann fields (denoted here by t/ and f/). 
The generating functional takes the form 

Z[ J, L, ~, ~3 = f D~5 Dc~ DO Dtl 

x exp{S[(~,d, fl, tl]+f(J(~+L~+~tl+(il)d4x} (7) 
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where S is the "action": 

S[r q~, O, tl] : i f r162 + F)d4x- i ff ~(x) K(X, y)~(y)d4x d4y 
! 

6F(x)7 
- ffo(xlIa,64(x-yl+ yC;  j,(,)d4xd4y (sl 

Let us remark that the following discussion does not depend at all on the 
precise form of the left-hand side of Eq. (1). One may replace it by a 
general function of r without affecting (11) below. 

A general variation of S produces the expression (we suppress integra- 
tions for simplicity) 

6S=i6d(O, r162  #,+ 6 r  

- ~ - 0 - g - r  C +  & 

We note that there is only one term involving 62F/62r This can be 
eliminated if we put 6r  with e an infinitesimal anticommuting 
parameter, since 62F/62r is symmetric, whereas qr/ is antisymmetric. The 
second term on the rhs then becomes ied(?, + 6F/6r which can clearly 
be canceled against the term containing 60, if we set 60 = lee. Finally, we 
observe that the only possible choice for the remaining variations is 6d = 0, 
and &/=  0, if we restrict ourselves to linear transformations. This shows 
that S is invariant under the transformation 

6d=o 
&/= 0 

(9) 

60 = id 

One may also show from (9) that this is a nilpotent transformation, i.e., the 
second variation of the fields vanishes. 

As mentioned in the introduction, this symmetry is just a consequence 
of the constrained nature of the theory, in which the determinant provides 
an invariant measure for r It is interesting to note that our system does 
not possess an anti-BRS symmetry (~1~ (that is, a symmetry relating 6r to 
the antighost 0 instead of to the ghost ~/) unless F 2 = 0, and H =  - H  § 
where H § is the adjoint of H. On the other hand, systems that are 
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invariant under time reversal possess an anti-BRS provided F satisfies the 
integrability condition ~F(x)/~(y)= ~F(y)/~(x). At this point, we remind 
the reader that we have imposed initial conditions on the fields and, conse- 
quently, one should regard the determinant as intrinsically retarded. This 
fact is responsible for the unfamiliar requirements on F2 and H above, as 
well as for the absence of the supersymmetry discussed in ref. 9, which 
arises only if F is integrable, and all fields are assumed to be periodic. 
Gozzi ~12~ has shown that periodicity of the fields is equivalent to a 
half-retarded, half-advanced dynamics. Therefore the supersymmetry has 
no bearing on our problem, except possibly in the long-time limit, where 
the supersymmetric theory apparently produces the correct equilibrium 
distribution. Furthermore, even if the anti-BRS did exist, it would be the 
conjugate of the BRS, and thus ~d = 0 would remain true after combining 
the two. This is evidence that the supersymmetry can only be obtained 
from the BRS if one supplements it with a more general symmetry. 

Since S is invariant under (9), we find that a change of variables in the 
generating functional affects only the source terms (the Jacobian is clearly 
equal to one) 

~] = f D~ Dq~ Dr/DO Z[J, L, 

x exp(S+J~+L~+~l+(O+J6(b+~O) (10) 

Replacing 6~b and ~f/from (9) and expanding in e gives us two terms; the 
first reproduces Z, and therefore the second must vanish, which leads 
finally to 

(J f--~-i~---L) Z[J,L,~,~]=O (11) 

This Ward identity for Z plays a key role in what follows. 

4. S O M E  C O N S E Q U E N C E S  OF THE W A R D  I D E N T I F Y  

Our first task in this section will be to show how (11) can be used to 
reduce the number of correlation functions to be computed. Consider two 
functions C1[0, r/, d] and C2[r/, ~, ~]. To compute their averages (which 
we denote by ( . ) )  with d and t/, respectively, we only need to replace 
fields by derivatives with respect to sources, apply the resulting operator to 
Z, and set the sources equal to zero. For C1, this is the same as applying 
iC1 [r ~/~, g~/g)L] r to (11) and setting the sources to zero. A similar 
procedure can be followed for C2 to conclude that 

(C,  E~/, r/, ~] ~ )  = 0 (12) 

<C2E~, ~, d3~> =0 (13) 
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Note that they imply, in particular, the vanishing of the exact 0d, ~/q~, d~, 
~/r/, and r/~b propagators. It is a simple excercise to prove that only ~bq~, ~bd, 
and Or/have nonvanishing propagators, with 

(Or/) = i(~bq~) (14) 

also a consequence of (11). 
Of course, the Ward identity has many other implications. Our mare 

interest here is to derive from it an equation showing how the contribution 
of the determinant is canceled by other terms in S in a nonperturbative 
fashion. We start by assuming that Fe in Eq. (2) can be expanded in a 
series in ~b (this is not a serious restriction in practice, and it has to be 
assumed in the calculation of Section 2 also). Then, if we let 

['2~y. = 5F2[(~(x)]aq~(y) ~ _ j  

we can show that, for any function A(J), 

F2xJ(y) A(J) = Y(y) FzxA(J) + ['2xyA(J) (15) 

Differentiating (11) with respect to ((x) and setting all sources except J 
equal to 0, we find 

(J(z)  < O(x) r/(z) > d4z = i(d(x) ) (16) J 

Measurable quantities pick up contributions from the ghosts only through 
the interaction term O 6F2/6~ r/, in which the arguments of O and r/ are 
integrated over. Acting on (16) with/~z,, and using (15), we obtain, in the 
limit J--+ 0, 

( 6F2[~(Y)] f O(x) r/(z) d4z=i(Fz[O(y)]d(x))  (17) 

One may now put x = y  and integrate; in our condensed notation this 
r eads  

r \ 
O - ~ r / /  =i(F2d)  (18) 

The right-hand side is precisely the ~bq~ interaction term, except for the sign. 
Hence (18) tells us that the sum of these contributions will vanish, as can 

822/56/1-2-5 
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be verified order by order in perturbation theory. Since the absence of 0q~ 
loops is necessary to maintain causality, we can interpret (18) as stating 
that the determinant ensures that causality as well as the constraint (1) is 
obeyed exactly. 

In agreement with the remark after Eq. (8), one may substitute F2 in 
(18) by any observable O[0] ,  as long as it can be expressed as a series in 
0. This establishes a general relationship between the average response 
function (O[0]q~> and the ghosts, of which (18) and (14) are particular 
examples. 

5. T H E  CASE OF A W H I T E  NOISE S T I R R I N G  FORCE 

We shall now apply the results of Sections 3 and 4 to a system forced 
by Gaussian white noise. For this case it has been shown that one can per- 
form an integration over the conjugate field ~, thus eliminating it from the 
generating functional./1~ This is a significant departure from theories of 
statistical dynamics utilizing the conjugate field where it must be included 
in the calculation of the full set of correlation functions. While the physical 
significance of the q~ field by itself is not clear, it is a straightforward matter 
to show that the response of the system at point y to an external distur- 
bance at point x is given by the (i~(x)0(Y)> propagator. We shall show 
how the elimination of this field combined with the results of Sections 3 
and 4 leads to a more cleareut physical interpretation in terms of the 
fundamental equations governing the stochastic process. 

The generating functional for which we wish to invoke BRS invarianee 
is given by (I~ 

Z[J,~,(]=f D o D ODtlexp - (~?,0+F) 2 

- 0  @ , + ~  q + J 0 +  ~t/+ (@ (19) 

This action is invariant under the transformation 

,~t/=0 

60 = -r162 + F) (20) 

with g an infinitesimal anticommuting parameter as before, and where the 
result of integrating out the conjugate field leads to the replacement of q~ 
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by the factor i(8,~b + F). Note that (20) is not nilpotent, as opposed to (9). 
The Ward identity (11) now becomes 

J +~ c3 ,~)+F  ~)  Z [ J , ~ , ( ] = 0  (21) 

Proceeding with the analysis as in Section4, one now finds that (14) is 
replaced by 

(O~/) = - (~b(~?,~b + F) ) (22) 

which clearly shows that the response of the system to an external distur- 
bance is given by the O~/propagator. This is not surprising, since, as noted 
before, the presence of the ghosts derives from a functional determinant in 
the path integral which arises from the system constraint imposed through 
the prescription of the external force. We feel that this physical interpreta- 
tion of a constrained system is more directly accessible than that afforded 
by formalisms in which d appears but the ghosts do not. 

Furthermore, it is easy to show that 

(0,~b + F )  = 0  (23) 

as it must for the Gaussian white noise force, and that 

(C3[~, ~b]q) = 0  (24) 

implying the vanishing of the r/~b propagator. Similarly, from the path 
integral definition of the generating functional one may prove that the 00 
and 0~b propagators must also vanish, leaving only the ~b~b and 0H with non- 
vanishing propagators. 

While the discussion to this point has been formal, it should be 
pointed out that these results have practical applications. In particular, the 
problem of calculating correlation functions of a turbulent incompressible 
fluid stirred by a white noise force can be described by a generating 
functional of the form (19), and the results of using the Ward identity (21) 
lead 1:o considerable simplifications. This will be discussed more completely 
in a forthcoming article. It should also be noted that the possibility of 
eliminating the conjugate field is not restricted to the case of a white noise 
force. 

6. C O N C L U S I O N S  

The methods employed in this paper have allowed us to give a 
definitive answer to the question of the role of the determinant at the non- 
perturbative level. The analysis in Sections ! and 4 should make it clear 
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that, for practical calculations, the logical choice would be to drop the 
determinant together with the graphs containing Cq~ loops, since that would 
result in a considerable simplification of the task at hand. To study the 
structure and properties of the theory in general, however, the ghost for- 
mulation offers a superior perspective in that it provides a linear realization 
of a symmetry that is difficult to see in the formalism outlined in Section 1. 
We have illustrated the use of this symmetry with examples that appear 
relatively simple in the light of the present methods, but require some com- 
putational effort, and cannot be solved in as general a fashion if one uses 
the older methods. These examples obviously do not exhaust the possible 
applications. In effect, the Ward identity (11) should prove most valuable 
in studies concerning the renormalizability of a particular model, since this 
invariance would have to be preserved in order to incorporate causality 
into the renormalized theory. The importance of a requirement of this kind 
is well known in QFT. 
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